Tilted Janus polymer pillars †

نویسندگان

  • Myoung-Woon Moon
  • Tae-Gon Cha
  • Kwang-Ryeol Lee
  • Ashkan Vaziri
  • Ho-Young Kim
چکیده

Asymmetric adhesion is used by many insects and gecko lizards, allowing them to move on nearly any surface – horizontal, tilted or vertical. The feet of many of these creatures is covered with intricate fibrillar structures that are responsible for their superb manoeuvring ability. Among these creatures, gecko lizards have one of the most efficient and interesting adhesion devices consisting of finely angled arrays of branched fibers (setae). Here, we developed a method to create tilted Janus (two-face) micropillars on the surface of an elastomeric polymer to mimic the geometry of a gecko’s footpad. The method combines soft lithography to create straight micropillars and ion beam irradiation to tilt the straight micropillars in a controlled fashion. A set of experiments were performed to measure the adhesion and friction characteristics of the fabricated tilted micropillars. Our experiments showed that the friction force along the tilting direction is approximately three times higher than the friction force associated with the sliding against the tilting direction of tilted micropillars due to the difference in the contact area during sliding of a glass ball.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoelastic analysis of all-on-four concept using different implants angulations for maxilla.

Conventional tilted implants are used in oral rehabilitation for heavily absorbed maxilla to avoid bone grafts; however, few research studies evaluate the biomechanical behavior when different angulations of the implants are used. The aim of this study was evaluate, trough photoelastic method, two different angulations and length of the cantilever in fixed implant-supported maxillary complete d...

متن کامل

Effect of Geometric and Chemical Anisotropy of Janus Ellipsoids on Janus Boundary Mismatch at the Fluid–Fluid Interface

We investigated the geometric and chemical factors of nonspherical Janus particles (i.e., Janus ellipsoids) with regard to the pinning and unpinning behaviors of the Janus boundary at the oil-water interface using attachment energy numerical calculations. The geometric factors were characterized by aspect ratio (AR) and location of the Janus boundary (α) separating the polar and apolar regions ...

متن کامل

Janus nanoparticles inside polymeric materials: interfacial arrangement toward functional hybrid materials

Control of the location and spatial organization of nanoparticles (NPs) inside polymers is essential to generate highly ordered NP-based functional devices including plasmonic waveguides, photonic crystals, optical lenses, memory storage devices, nanoelectronic circuits, photovoltaics, and batteries. Due to the unique combination of amphiphilicity and the particle character, Janus nanoparticles...

متن کامل

Janus subcompartmentalized microreactors.

We report on Janus subcompartmentalized assemblies with enzyme loaded liposomes entrapped within a polymer carrier capsule - Janus subcompartmentalized microreactors. The concept is based on the use of Pickering emulsions and the subsequent deposition of interacting liposomes and polymer layers. We demonstrate the adjustment of the size of the Janus domains and the control over the amount of tr...

متن کامل

Polymer Blend Emulsions Stabilized by Janus Particles KYLE

Submitted for the MAR13 Meeting of The American Physical Society Polymer Blend Emulsions Stabilized by Janus Particles KYLE BRYSON, THOMAS RUSSELL, RYAN HAYWARD, University of Massachusetts Amherst — Kinetic trapping of bicontinuous polymer morphologies through the interfacial segregation of nanoparticles is of interest due to the unique combination of the properties of each component provided ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010